Derivative of \(tanx = sec^2x \)

What Is The Derivative Of tan(x)?

\( \frac{d}{dx} {tanx} = \frac{d}{dx} \frac{sinx}{cosx}\) [we know that \( tanx =\frac{sinx}{cosx} \)]

\( => \frac{d}{dx} {tanx} = \frac{cosx \times \frac{d}{dx} {sinx} – \frac{d}{dx} {cosx} \times sinx}{cos^2x} \) [Use Quotient Rule]

\( => \frac{d}{dx} {tanx} = \frac{cosx \times cosx – (-sinx) \times sinx}{cos^2x} \) [Simply]

\( => \frac{d}{dx} {tanx} = \frac{cos^2x + sin^2x }{cos^2x} \)

Use the Pythagorean identity for sine and cosine [\( sin^2x + cos^2x =1 \)]

\( => \frac{d}{dx} {tanx} = \frac{1 }{cos^2x} \)

we know that \( \frac{1}{cosx} =secx \)

\( => \frac{d}{dx} {tanx} = sec^2x \)

By Editorial Staff

Here you can check the Mathematics Questions which is related to Fractions and multiples and other topics. You can check Maths Formulas, Chemistry Formulas, and Hindi Grammar. Subscribe My YouTube Channel for Online Study: SabkuchhLearn