Math

List of Basic Maths Formulas for Class 5 to 12

Maths Formulas

Sometimes, Math is Fun and sometimes it could be a surprising fact too. In our routine life, you can check the best route to your school, you can check where more discounted products are available in the market, and you can check which bank can offer the superior interests. This is all about calculation and connecting dots that we are able to find the solution.

Mensuration Maths Formulas

Formula of Square

  • Area of Square = \( l^{2} \)
  • Perimeter of Square = \( 4 \times l \)

Where,
l : length of side

Formula of Rectangle

  • Area of Rectangle = \( l \times w \)
  • Perimeter of Rectangle = \( 2 (l+w) \)
    • Where,
      L = Length, w = Width

Formula of Circle

  • Area of Circle = \( \pi r^{2} \)
  • Perimeter of Circle = \( 2 \pi r \)

Where,
𝒓 = Radius, d = Diameter, d = 2𝒓

Formula of Scalene Triangle

  • Area of Scalene Triangle = \( \sqrt{s(s-a)(s-b)(s-c)} \)
  • Perimeter of Scalene Triangle = \( a+b+c \)
Where,
a, b, c are Side of Scalene Triangle

Formula of Isoscele Triangle

  • Area of Isoscele Triangle = \(\frac{1}{2}bh\)
  • Altitude of an Isosceles Triangle = \(\sqrt{a^{2}-\frac{b^{2}}{4}}\)
  • Perimeter of Isosceles Triangle,P = \( 2a+b \)
Where,
b = Base, h = Height, a = length of the two equal sides

Formula of Right Triangle

  • Area of an Right Triangle = \( \frac{\sqrt{1}}{2}bh\)
  • Perimeter of an Right Triangle = \( a+b+c\)
  • semi Perimeter of an Right Triangle = \( \frac{a+b+c}{2}\)
where,
b = Base, h = Hypotenuse, a = Hight

Formula of Equilateral Triangle

  • Area of an Equilateral Triangle = \( \frac{\sqrt{3}}{4}a^{2}\)
  • Perimeter of an Equilateral Triangle = \( 3a\)
  • Semi Perimeter of an Equilateral Triangle = \( \frac{3a}{2}\)
  • Height of an Equilateral Triangle = \( \frac{\sqrt{3}}{2}a\)
Where,
a = side, h = altitude

Formula of Rhombus

  • Perimeter of a rhombus = \(4\times Side\)
  • Area of a Rhombus A = \( \frac{1}{2} \times d_{1} \times d_{2} \)
Where,
d1 and d2 are the diagonals

Formula of Parallelogram

  • Area of a Parallelogram = \( b\times h\)
  • Perimeter of Parallelogram = \( 2\left(b+h\right)\)
Where,
b: Base, h: Height.

Formula of Trapezoid

  • Perimeter of a Trapezoid = \(a+b+c+d\)
  • Area of a Trapezoid = \( \frac{1}{2} \times h \times (a + b)\)
Where:
h = height, a = the short base, b = the long base, c, d are the lengths of side.

Formula of Cube

  • Surface area of Cube = \(6a^{2}\)
  • Volume of a cube = \(a^{3}\)
Where,
a is the side length of the cube.

Formula of Cuboid

  • Surface area of Cuboid = \( 2(lb + bh + hl)\)
  • Volume of a Cuboid = \( h \times l \times w\)
Where,
l: Height, h: Legth, w: Depth

Formula of sphere

  • Diameter of a sphere = \(2r\)
  • Circumference of a sphere = \(2\pi r\)
  • Surface area of a sphere = \(4\pi r^{2}\)
  • Volume of a sphere = \(\frac{4}{3}\: \pi r^{3}\)
Where,
r: Radius

Formula of Hemisphere

  • Curved Surface area of a Hemisphere = \(4\pi r^{2}\)
  • Total Surface area of a Hemisphere = \(3\pi r^{2}\)
  • Volume of a Hemisphere = \(\frac{2}{3}\: \pi r^{3}\)
Where,
r: Radius

Formula of Cylinder

  • Curved Surface area of a Cylinder = \(2\pi rh\)
  • Total Surface area of a Cylinder = \(2\pi r(r+h)\)
  • Volume of a Cylinder = \( \pi r^{2} h\)
Where,
r: Radius, h: Height

Formula of cone

  • Total Surface Area of cone = \(\pi r \left (s+r \right )\)
  • Vomule of cone = \(\frac {1}{3}\pi r^{2}h\)
  • Curved Surface Area of cone = \(\pi rs\)
Where,
r = radius, h = height, s = slant height

Trigonometry Maths Formulas

  • \(\sin \theta = \frac{Opposite}{Hypotenuse}\)
  • \(\sec \theta = \frac{Hypotenuse}{Adjacent}\)
  • \(\cos\theta = \frac{Adjacent}{Hypotenuse}\)
  • \(\tan \theta =\frac{Opposite}{Adjacent}\)
  • \(csc \theta = \frac{Hypotenuse}{Opposite}\)
  • \(cot \theta = \frac{Adjacent}{Opposite}\)

The Reciprocal Identities are given as:

  • \(cosec\theta =\frac{1}{\sin\theta }\)
  • \(sec\theta =\frac{1}{\cos\theta }\)
  • \(cot\theta =\frac{1}{\tan\theta }\)
  • \(sin\theta =\frac{1}{csc\theta }\)
  • \(cos\theta =\frac{1}{\sec\theta }\)
  • \(tan\theta =\frac{1}{cot\theta }\)

Trigonometric Values of Special Angles

Degreesincostancotseccosec
0∘010Not Defined1Not Defined
30∘\[\frac{1}{2}\]\[\frac{√3}{2}\]\[\frac{1}{√3}\]√3\[\frac{2}{√3}\]2
45∘\[\frac{1}{√2}\]\[\frac{1}{√2}\]11√2√2
60∘\[\frac{√3}{2}\]\[\frac{1}{2}\]√3\[\frac{1}{√3}\]2\[\frac{2}{√3}\]
90∘10Not Defined0Not Defined1

Product:

  • \(\sin\: x\cdot \cos\:y=\frac{\sin(x+y)+\sin(x-y)}{2}\)
  • \(\cos\: x\cdot \cos\:y=\frac{\cos(x+y)+\cos(x-y)}{2}\)
  • \(\sin\: x\cdot \sin\:y=\frac{\cos(x+y)-\cos(x-y)}{2}\)

Sum to Product:

  • \(\sin\: x+\sin\: y=2\sin\frac{x+y}{2}\cos\frac{x-y}{2}\)
  • \(\sin\: x-\sin\: y=2\cos\frac{x+y}{2}\sin\frac{x-y}{2}\)
  • \(\cos\: x+\cos\: y=2\cos\frac{x+y}{2}\cos\frac{x-y}{2}\)
  • \(\cos\: x-\cos\: y=-2\sin\frac{x+y}{2}\sin\frac{x-y}{2}\)<

Pythagorean

  • Sin2x + Cos2x = 1
  • 1 + tan2x = sec2x
  • 1 + cot2x = cosec2x

Pythagorean in Radical Form

  • sinx = ∓√1cos2x
  • tanx = ∓√sec2x-1
  • cosx = ∓√1sin2x

Odd-Even

  • Sin(-x)=-sin x
  • cos(-x)=-cos x
  • tan(-x)=-tan x
  • cot(-x)=-cot x
  • sec(-x)=-sec x
  • cosec(-x)=-cosec x

Ratio or Quotient Identities are given as:

  • \( Sinθ = Cosθ \times Tanθ \)
  • \( Cosθ = Sinθ \times Cotθ \)
  • \( Tanθ = \frac{Sinθ}{Cosθ} \)
  • \( Cotθ = \frac{Cosθ}{Sinθ} \)

Periodicity

  • \(sin(x+2\pi )=sin\; x\)
  • \(cos(x+2\pi )=cos\; x\)
  • \(tan(x+\pi )=tan\; x\)
  • \(cot(x+\pi )=cot\; x\)

Co-function:

  • \(sin(90^{\circ}-x)=cos\; x\)
  • \(cos(90^{\circ}-x)=sin\; x\)
  • \(tan(90^{\circ}-x)=cot\; x\)
  • \(cot(90^{\circ}-x)=tan\; x\)

Sum/Difference:

  • \( \sin (x + y) = \sin(x) \cos(y) + \cos(x) \sin(y)\)
  • \(\cos(x + y) = \cos(x) \cos(y) – \sin(x) \sin(y)\)
  • \(\tan(x+y)=\frac{\tan\: x+\tan\: y}{1-\tan\: x\cdot \tan\: y}\)
  • \(\sin(x – y) = \sin(x) \cos(y) – \cos(x) \sin(y)\)
  • \(\cos(x – y) = \cos(x) \cos(y) + \sin(x) \sin(y)\)
  • \(\tan(x-y)=\frac{\tan\: x – \tan\: y}{1+\tan\: x\cdot tan\: y}\)

Double Angle:

  • \(\sin(2x) = 2\sin(x).\cos(x)\)
  • \(\cos(2x) = \cos^{2}(x) – \sin^{2}(x)\)
  • \(\cos(2x) = 2 \cos^{2}(x) -1\)
  • \(\cos(2x) = 1 – 2 \sin^{2}(x)\)
  • \(\tan(2x) = \frac{[2\: \tan(x)]}{[1 -\tan^{2}(x)]}\)

Half Angle:

  • \(\sin\frac{x}{2}=\pm \sqrt{\frac{1-\cos\: x}{2}}\)
  • \(\cos\frac{x}{2}=\pm \sqrt{\frac{1+\cos\: x}{2}}\)
  • \(\tan(\frac{x}{2}) = \sqrt{\frac{1-\cos(x)}{1+\cos(x)}}\)

Albegra Maths Formulas

  • (a + b)2=a2 + 2ab + b2
  • (a−b)2=a2−2ab + b2
  • (a + b)(a – b)=a2 – b2
  • (x + a)(x + b)=x2 + (a + b)x + ab
  • (x + a)(x – b)=x2 + (a – b)x – ab
  • (x – a)(x + b)=x2 + (b – a)x – ab
  • (x – a)(x – b)=x2 – (a + b)x + ab
  • (a + b)3=a3 + b3 + 3ab(a + b)
  • (a – b)3=a3 – b3 – 3ab(a – b)
  • (x + y + z)2=x2 + y2 + z2 + 2xy + 2yz + 2xz
  • (x + y – z)2=x2 + y2 + z2 + 2xy – 2yz – 2xz
  • (x – y + z)2=x2 + y2 + z2 – 2xy – 2yz + 2xz
  • (x – y – z)2=x2 + y2 + z2 – 2xy + 2yz – 2xz
  • x3 + y3 + z3 – 3xyz=(x + y + z)(x2 + y2 + z2 – xy – yz−xz)
  • (x + a)(x + b)(x + c)=x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
  • x3 + y3=(x + y)(x2 – xy + y2)
  • x3 – y3=(x – y)(x2 + xy + y2)
  • (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)
  • (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)
  • a4 – b4 = (a – b)(a + b)(a2 + b2)
  • a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)
  • If n is a natural number, an – bn = (a – b)(an-1 + an-2b+…+ bn-2a + bn-1)
  • If n is even (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)
  • If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)
  • (a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….
  • Laws of Exponents
    (am)(an) = am+n
    (ab)m = ambm
    (am)n = amn
  • Fractional Exponents
    a0 = 1
    aman=am−naman=am−n
    amam = 1a−m1a−m
    a−ma−m = 1am
\( x^{2} + y^{2} = \frac{1}{2} \left [(x + y)^{2} + (x – y)^{2} \right ]\)
\( x^{2} + y^{2} + z^{2} -xy – yz – zx = \frac{1}{2} [(x-y)^{2} + (y-z)^{2} + (z-x)^{2}]\)
\(\mathbf{a_{1}x + b_{1}y + c_{1} = 0}\)
\(\mathbf{a_{2}x+ b_{2}y + c_{2}} = 0 \)
Distributive Property a ( b+c) = (a × b) + (a × c)
Commutative Property of Addition a + b = b+a
Commutative Property of Multiplication a× b = b×a
Associative Property of Addition a + (b + c ) = ( a+ b ) +c
Associative Property of Multiplication a ( b × c ) = ( a× b ) × c
Additive Identity Property a +0 = a
Multiplicative Identity Property a×1 = a
Additive Inverse Property a+ ( -a) = 0
Multiplicative Inverse Property a × 1/a = 1
Zero Property of Multiplication a × 0 = 0
If\(\vec{a}=x\hat{i}+y\hat{j}+z\hat{k}\) then magnitude or length or norm or absolute value of \(\vec{a} \) is \( \left | \overrightarrow{a} \right |=a=\sqrt{x^{2}+y^{2}+z^{2}}\)
A vector of unit magnitude is unit vector. If \(\vec{a}\) is a vector then unit vector of \(\vec{a}\) is denoted by \(\hat{a}\) and \(\hat{a}=\frac{\hat{a}}{\left | \hat{a} \right |}\) Therefore \( \hat{a}=\frac{\hat{a}}{\left | \hat{a} \right |}\hat{a}\)
Important unit vectors are \(\hat{i}, \hat{j}, \hat{k}\), where \(\hat{i} = [1,0,0],\: \hat{j} = [0,1,0],\: \hat{k} = [0,0,1]\)
If \( l=\cos \alpha, m=\cos \beta, n=\cos\gamma,\) then \( \alpha, \beta, \gamma,\) are called directional angles of the vectors\(\overrightarrow{a}\) and \(\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1\)
\(\vec{a}+\vec{b}=\vec{b}+\vec{a}\)
\(\vec{a}+\left ( \vec{b}+ \vec{c} \right )=\left ( \vec{a}+ \vec{b} \right )+\vec{c}\)
\(k\left ( \vec{a}+\vec{b} \right )=k\vec{a}+k\vec{b}\)
\(\vec{a}+\vec{0}=\vec{0}+\vec{a}\), therefore \( \vec{0}\) is the additive identity in vector addition.
\(\vec{a}+\left ( -\vec{a} \right )=-\vec{a}+\vec{a}=\vec{0}\), therefore \(\vec{a}\) is the inverse in vector addition.

Probability and Set Theory Maths Formulas

  • Commutative= \( A\cup B = B\cup A \) and \( A\cap B = B\cap A \)
  • Associative= \( A\cup (B\cup C) = A\cup (B\cup C) \) and \( A\cap (B\cap C) = A\cap (B\cap C) \)
  • Neutral element= \( A\cup \theta = A \) and \( A\cap E = A \)
  • Absorbing element= \( A\cup E = E \) and \( A\cap \theta = \theta \)
  • Distributive= \( A\cup (B\cap C)=(A\cup B)\cap (A\cup C) \) and \( A\cap (B\cup C)=(A\cap B)\cup (A\cap C) \)
  • De Morgan’s laws= \( \bar(A\cap B) = \bar A \cup \bar B \) and \( \bar(A\cup B) = \bar A \cap \bar B \)
  • Independent Events= \( P(A | B)=P(A) \) and \( P(A\cap B)=P(A)×P(B)\)
  • Conditional Probability= \( P(A | B)=\frac{P(A\cap B)}{P(B)} \)
  • Laplace laws= \( P(A)=\frac{Number\;of\;ways\;it\;can\;happen}{Total\;Number\;of\;Outcomes} \)
  • Complement of an Event= \( P (\bar A)=1 – P(A)\)
  • Union of Events= \( P(A\cup B)=P(A)+P(B)−P(A\cap B)\)

Statistics Maths Formulas

\(Direct\; Method: x̅ = \frac{\sum_{i=1}^{n}f_i x_i}{\sum_{i=1}^{n}f_i}\)
where fi xi is the sum of observations from value i = 1 to n And fi is the number of observations from value i = 1 to n
\(Assumed\; mean\; method : x̅ = a+\frac{\sum_{i=1}^{n}f_i d_i}{\sum_{i=1}^{n}f_i}\)
\(Step \;deviation \;method : x̅ = a+\frac{\sum_{i=1}^{n}f_i u_i}{\sum_{i=1}^{n}f_i}\times h\)
\(Mode = l+\frac{f_1 – f_0}{2f_1 – f_0 – f_2} \times h\)
\( Range = Largest\; Value – Smallest\; Value \)
\(Median = l+\frac{\frac{n}{2} – cf}{f} \times h\)
\( Variance = \sigma ^{2} = \frac{\sum (x- \bar{x})^{2}}{n}\)
Where, x = Items given, = Mean, n = Total number of items
\( Standard\;Deviation \; \sigma = \sqrt{\frac{\sum (x-\bar{x})^{2}}{n}}\)
Where, x = Items given, = Mean, n = Total number of items

Exponents and Powers Maths Formulas

  • Power zero = \( a^{ 0 } = 1\)
  • Power one = \( a^{ 1 } = a\)
  • Fraction formula = \( \sqrt{ a } = a^{ \frac{ 1 }{ 2 }}\)
  • Reverse formula = \( \sqrt{ n } { a } = a^{\frac{ 1 } { n }}\)
  • Negative power value = \( a^{ -n } = \frac{ 1 }{ a^{n} }\)
  • Fraction formula = \( a^{n} = \frac{1}{ a^{ -n } }\)
  • Product formula = \( a^{m}a^{n} = a^{ m + n }\)
  • Division Formula = \( \frac{ a^{ m }}{ a^{ n }} = a ^{ m-n }\)
  • Power of Power formula = \( (a^{ m })^{ p } = a^{ mp }\)
  • Power distribution Formula = \( (a^ { m }c^{ n })^{ x } = a ^ { mx } c ^{ nx }\)
  • The Power distribution Formula = \( \left ( \frac {a ^{ m }}{c^{ n }} \right )^{x} = \frac{a^{ mx }}{c^{ nx }}\)
  • Power Even Number = \( (-1)^{Even Number} = 1 \)
  • Power Odd Number = \( (-1)^{Odd Number} = -1 \)
  • Product of Power Formula = \( (ab)^m = a^m \times b^m \)

Complex Number Maths Formulas

  • Complex number = \( z=a+bi \)
  • Conjugate = \( \bar z =a−bi \)
  • Symmetry = \( −z=−a−bi \)
  • Equality = a+bi=c+di⇔a=c and b=d
  • Addition = \( (a+bi)+(c+di)=(a+c)+(b+d)i \)
  • Subtraction = \( (a+bi)−(c+di)=(a−c)+(b−d)i \)
  • Multiplication = \( (a+bi)\times(c+di)=(ac−bd)+(ad+bc)i \)
  • Division = \( \frac{(a+bi)}{(c+di)} = \frac{a+bi}{c+di} \times \frac{c-di}{c-di} = \frac{ac+bd}{c^{2}+d^{2}} + \frac{bc-ad}{c^{2}+d^{2}}\times i \)
  • Multiplication Conjugates = \( (a+bi)(a+bi)=a^{2}+b^{2} \)
Powers of Complex Numbers
  • in = i, if n = 4a+1, i.e. one more than the multiple of 4.

Example – i1=i; i5=i; i9=i; i4a+1;

  • in = -1, if n = 4a+2, i.e. two more than the multiple of 4.

Example – i2= -1; i6= -1; i10= -1; i4a+2;

  • in = -i, if n = 4a+3, i.e. Three more than the multiple of 4.

Example – i3= -i; i7= -i; i11= -i; i4a+3;

  • in = -1, if n = 4a, i.e. the multiple of 4.

Example – i4= 1; i8= 1; i12= 1; i4a;

Logic Maths Formulas

      Conjunction      Disjunction      Implication
   pqp∧ q   pqp∨q   pqp ⇒ q
   VVV   VVV   VVV
   VFF   VFV   VFF
   FVF   FVV   FVV
   FFF   FFF   FFV
Law of noncontradiction p∧~p⇔F
Law of the excluded middle p∨~p⇔V
Double Negation ~(~p)⇔p
Commutativity Conjunction p∧q⇔q∧p
Disjunction p∨q⇔q∨p
Associativity Conjunction (p∧q)∧r⇔p∧(q∧r)
Disjunction (p∨q)∨r⇔p∨(q∨r)
Neutral Element Conjunction p∧V⇔p
Disjunction p∨F⇔p
Absorbing Element Conjunction p∧F⇔F
Disjunction p∨V⇔V
Idempotence Conjunction p∧p⇔p
Disjunction p∨p⇔p
Distributive Property Conjunction over Disjunction p∧(q∨r)⇔(p∧q)∨(p∧r)
Disjunction over Conjunction p∨(q∧r)⇔(p∨q)∧(p∨r)
Properties of Implication Transitive (p⇒q)∧(q⇒r)⇒(p⇒r)
Implication and Disjunction (p⇒q)⇔~p∨q
Negation ~(p⇒q)⇔p∧~q
Contrapositive of an Implication (p⇒q)⇔(~q⇒~p)
Properties of Equivalence Double implication (p⇔q)⇔[(p⇒q)∧(q⇒p)]
Transitive [(p⇔q)∧(q⇔r)]⇒(p⇔r)
Negation ~(p⇔q)⇔[(p∧~q)∨(q∧~p)]
De Morgan’s laws Negation of a Conjunction ~(p∧q)⇔~p∨~q
Negation of a Disjunction ~(p∨q)⇔~p∧~q
De Morgan’s laws Negation of Universal Quantifier ~(∀x,p(x))⇔∃x:~p(x)
Negation of Existential Quantifier ~(∃x:p(x))⇔∀x,~p(x)

Limits Maths Formulas

1) If \(\lim_{x \to a} f(x) = l\; and \; \lim_{x \to a} g(x) = m\), then

  • \( \lim_{x \to a} \left[ {f(x) \pm g(x)} \right] = l \pm m\)
  • \( \lim_{x \to a} f(x) \cdot g(x) = l \cdot m\)
  • \(\lim_{x \to a} \frac{{f(x)}}{{g(x)}} = \frac{l}{m}\), where \)m \ne 0\)
  • \(\lim_{x \to a} c{\text{ }}f(x) = c{\text{ }}l\)
  • \(\lim_{x \to a} \frac{1}{{f(x)}} = \frac{1}{l}\), where \)l \ne 0\)

2) \(\lim_{n \to \infty } {\left( {1 + \frac{1}{n}} \right)^n} = e\), where \)n\) is a real number.

3) \(\lim_{n \to 0} {\left( {1 + n} \right)^{\frac{1}{n}}} = e\), where \)n\) is a real number.

4) \(\lim_{x \to 0} \frac{{Sinx}}{x} = 1\), where \)x\) is measured in radians.

5) \(\lim_{x \to 0} \frac{{Tanx}}{x} = 1\)

6) \(\lim_{x \to 0} \frac{{Cosx – 1}}{x} = 0\)

7) \(\lim_{x \to a} \frac{{{x^n} – {a^n}}}{{x – a}} = n{a^{n – 1}}\)

8) \(\lim_{x \to 0} \frac{{{a^n} – 1}}{x} = \ln a\)

Logarithms Maths Formulas

Properties

  • \(\log_{b}1 = 0\)        (∵ b^0 = 1)
  • \(\log_{b}b = 1\)        (∵ b1 = b)
  • \(y = \ln x \quad \Rightarrow e^y = x\)
  • \(x = e^y \quad \Rightarrow \ln x = y\)
  • \(x = \ln e^x = e^{\ln x}\)
  • \(b^{\log_{b}x} = x\)
  • \(\log_{b}{b^y} = y\)

Laws of Logarithms

1. \(\log_{b}{M \times N} = \log_b{{M}} + \log_b{{N}}\) (where b, M, N are positive real numbers and b ≠ 1)

2. \(\log_{b}\frac{M}{N} = \log_b{{M}} – \log_b{{N}}\)(where b, M, N are positive real numbers and b ≠ 1)

3. \(\log_{b}M^c = c \ \log_b{{M}}\) (where b and M are positive real numbers , b ≠ 1, c is any real number)

4. \(\log_{b}M = \frac{\log {M}}{\log b} = \frac{\ln {M}}{\ln b} = \frac{\log_{k} {M}}{\log_{k} b}\) (where b, k and M are positive real numbers, b ≠ 1, k ≠ 1)

5. \(\log_{b}a = \frac{1}{\log_{a}b}\) (where a and b are positive real numbers, a ≠ 1, b ≠ 1)

6. If \(\log_{b}{M}=\log_{b}{N}\), then M = N (where b, M and N are positive real numbers and b ≠ 1).
Direction Of A Vector Formula Probability Distribution Formula
Quartile Formula Circumference of a Circle Formula
Decay Formula Margin of Error Formula
Population Mean Formula Infinite Geometric Series Formula
Double Time Formula Linear Approximation Formula
Cosine Formula Spherical Segment Formula
Proportion Formula Rectangular Prism Formula
R Squared Formula Triangular Prism Formula
Statistical Significance Formula Difference of Squares Formula
Vertex Formula Perfect Square Formula
Vieta Formula Right Angle Formula
U Substitution Formula Percentage Change Formula
Regular Square Pyramid Formula Gross Profit Formulas
Trajectory Formula Exponential Formulas
Sample Mean Formula Quotient Formulas
Real Number Box Formulas
Simple Interest Formula X& Y Intercept Formulas
Triangular Pyramid Formula Coefficient Formulas
Distance Formula Arithmetic Sequence Formulas
Weighted Mean Formula Parallelogram Formulas
Multiplication Table Pentagon Formulas
Volume Of Parallelepiped Formula Octagon Formulas
Volume Of An Ellipsoid Formula Binary Formulas
Volume Of A Square Pyramid Formula Binomial Formulas
Charge Density Formula Isosceles Triangle Formulas
Complex Number Power Formula Equilateral Triangle Formulas
Diagonal Formula Triangle Formulas
Division Formula Area of Cube Formulas
Diameter Formula Sphere Formulas
Coin Toss Probability Formula Trapezoid Formulas
Circle Graph Formula Hexagon Formulas
Chord Length Formula Cube Formulas
Cofunction Formulas Discount Formulas
Cofactor Formula Rhombus Formulas
Cpk Cp Formula Cone Formulas
Degree And Radian Measure Formula Equation Formulas
Consecutive Integers Formula Cylinder Formulas
Interpolation Formula Pythagoras Formulas
Prime Number formula Matrix Formulas
Euler Maclaurin formula Area of Circle Formulas
Frequency Distribution formula Circle Formulas
Hypergeometric Distribution formula Compound Interest Formulas
Implicit Differentiation formula Completing the Square Formulas
Inverse Function formula Square Formulas
Inverse Hyperbolic Functions formula Factorial Formulas
Pearson Correlation formula Statistics Formulas
Confidence Interval formula Linear Formulas
Lagrange Interpolation formula Derivative Formulas
Hypothesis Testing formula Differentiation Formulas
Kite formula Pyramid Formulas
Degrees of Freedom formula Rectangle Formulas
Interquartile Range formula Probability Formulas
Function Notation formula Mean Median Mode Formulas
Gaussian Distribution formula Vector Formulas
Hyperbolic Function formula Ellipse Formulas
What Is Numbers? Permutation & Combination Formulas
Area under the Curve Formula Complex Number Formulas
Axis of Symmetry Formula Calculus Formulas
Arithmetic Progression Formula Integration Formulas
Average Deviation Formula Trigonometry Formulas
Equation of a Circle Formula Polynomial Formulas
Chain Rule Formula Geometry Formulas
Quadratic Interpolation Formula Algebra Formulas
Change of Base Formula LCM Formulas
Absolute Value Formula Percentage Formulas
Discriminant Formula Effect Size Formula

Learning Math is not easy and this is the reason why we have discovered unique ways to amplify your learning. We have given easy definitions and formulas of different mathematical concepts so that you can learn them at your fingertips quickly. Also, we have hosted a large sheet of formulas for your reference so that you can memorize them and apply them wherever needed.

Download 1300 Maths Formulas PDF

You just have to click on the topic and get all relevant details and formulas with simple navigation. Also, we have discussed the applications of the different mathematical concepts in real life and how it can help students in their careers. Well, formulas can be simpler or complex based on the topic you selected but there is a need for depth understanding of each of the formulas to solve a particular problem.

List of Math Theorems

MidPoint Theorem Remainder Theorem
Stewart’s Theorem Inscribed Angle Theorem
Cyclic Quadrilateral Theorem Ceva’s Theorem
Apollonius Theorem Angle Bisector Theorem
Quadrilateral Theorem Bayes Theorem
Binomial Theorem Pythagoras Theorem