Maths Formulas
Sometimes, Math is Fun and sometimes it could be a surprising fact too. In our routine life, you can check the best route to your school, you can check where more discounted products are available in the market, and you can check which bank can offer the superior interests. This is all about calculation and connecting dots that we are able to find the solution.
Mensuration Maths Formulas
Formula of Square
Where, |
Formula of Rectangle
Where, |
Formula of Circle
Where, |
Formula of Scalene Triangle
a, b, c are Side of Scalene Triangle |
Formula of Isoscele Triangle
b = Base, h = Height, a = length of the two equal sides |
Formula of Right Triangle
b = Base, h = Hypotenuse, a = Hight |
Formula of Equilateral Triangle
a = side, h = altitude |
Formula of Rhombus
d1 and d2 are the diagonals |
Formula of Parallelogram
b: Base, h: Height. |
Formula of Trapezoid
h = height, a = the short base, b = the long base, c, d are the lengths of side. |
Formula of Cube
a is the side length of the cube. |
Formula of Cuboid
l: Height, h: Legth, w: Depth |
Formula of sphere
r: Radius |
Formula of Hemisphere
r: Radius |
Formula of Cylinder
r: Radius, h: Height |
Formula of cone
r = radius, h = height, s = slant height |
Trigonometry Maths Formulas
- \(\sin \theta = \frac{Opposite}{Hypotenuse}\)
- \(\sec \theta = \frac{Hypotenuse}{Adjacent}\)
- \(\cos\theta = \frac{Adjacent}{Hypotenuse}\)
- \(\tan \theta =\frac{Opposite}{Adjacent}\)
- \(csc \theta = \frac{Hypotenuse}{Opposite}\)
- \(cot \theta = \frac{Adjacent}{Opposite}\)
The Reciprocal Identities are given as:
- \(cosec\theta =\frac{1}{\sin\theta }\)
- \(sec\theta =\frac{1}{\cos\theta }\)
- \(cot\theta =\frac{1}{\tan\theta }\)
- \(sin\theta =\frac{1}{csc\theta }\)
- \(cos\theta =\frac{1}{\sec\theta }\)
- \(tan\theta =\frac{1}{cot\theta }\)
Trigonometric Values of Special Angles
Degree | sin | cos | tan | cot | sec | cosec |
0∘ | 0 | 1 | 0 | Not Defined | 1 | Not Defined |
30∘ | \[\frac{1}{2}\] | \[\frac{√3}{2}\] | \[\frac{1}{√3}\] | √3 | \[\frac{2}{√3}\] | 2 |
45∘ | \[\frac{1}{√2}\] | \[\frac{1}{√2}\] | 1 | 1 | √2 | √2 |
60∘ | \[\frac{√3}{2}\] | \[\frac{1}{2}\] | √3 | \[\frac{1}{√3}\] | 2 | \[\frac{2}{√3}\] |
90∘ | 1 | 0 | Not Defined | 0 | Not Defined | 1 |
Product:
- \(\sin\: x\cdot \cos\:y=\frac{\sin(x+y)+\sin(x-y)}{2}\)
- \(\cos\: x\cdot \cos\:y=\frac{\cos(x+y)+\cos(x-y)}{2}\)
- \(\sin\: x\cdot \sin\:y=\frac{\cos(x+y)-\cos(x-y)}{2}\)
Sum to Product:
- \(\sin\: x+\sin\: y=2\sin\frac{x+y}{2}\cos\frac{x-y}{2}\)
- \(\sin\: x-\sin\: y=2\cos\frac{x+y}{2}\sin\frac{x-y}{2}\)
- \(\cos\: x+\cos\: y=2\cos\frac{x+y}{2}\cos\frac{x-y}{2}\)
- \(\cos\: x-\cos\: y=-2\sin\frac{x+y}{2}\sin\frac{x-y}{2}\)<
Pythagorean
- Sin2x + Cos2x = 1
- 1 + tan2x = sec2x
- 1 + cot2x = cosec2x
Pythagorean in Radical Form
- sinx = ∓√1–cos2x
- tanx = ∓√sec2x-1
- cosx = ∓√1–sin2x
Odd-Even
- Sin(-x)=-sin x
- cos(-x)=-cos x
- tan(-x)=-tan x
- cot(-x)=-cot x
- sec(-x)=-sec x
- cosec(-x)=-cosec x
Ratio or Quotient Identities are given as:
- \( Sinθ = Cosθ \times Tanθ \)
- \( Cosθ = Sinθ \times Cotθ \)
- \( Tanθ = \frac{Sinθ}{Cosθ} \)
- \( Cotθ = \frac{Cosθ}{Sinθ} \)
Periodicity
- \(sin(x+2\pi )=sin\; x\)
- \(cos(x+2\pi )=cos\; x\)
- \(tan(x+\pi )=tan\; x\)
- \(cot(x+\pi )=cot\; x\)
Co-function:
- \(sin(90^{\circ}-x)=cos\; x\)
- \(cos(90^{\circ}-x)=sin\; x\)
- \(tan(90^{\circ}-x)=cot\; x\)
- \(cot(90^{\circ}-x)=tan\; x\)
Sum/Difference:
- \( \sin (x + y) = \sin(x) \cos(y) + \cos(x) \sin(y)\)
- \(\cos(x + y) = \cos(x) \cos(y) – \sin(x) \sin(y)\)
- \(\tan(x+y)=\frac{\tan\: x+\tan\: y}{1-\tan\: x\cdot \tan\: y}\)
- \(\sin(x – y) = \sin(x) \cos(y) – \cos(x) \sin(y)\)
- \(\cos(x – y) = \cos(x) \cos(y) + \sin(x) \sin(y)\)
- \(\tan(x-y)=\frac{\tan\: x – \tan\: y}{1+\tan\: x\cdot tan\: y}\)
Double Angle:
- \(\sin(2x) = 2\sin(x).\cos(x)\)
- \(\cos(2x) = \cos^{2}(x) – \sin^{2}(x)\)
- \(\cos(2x) = 2 \cos^{2}(x) -1\)
- \(\cos(2x) = 1 – 2 \sin^{2}(x)\)
- \(\tan(2x) = \frac{[2\: \tan(x)]}{[1 -\tan^{2}(x)]}\)
Half Angle:
- \(\sin\frac{x}{2}=\pm \sqrt{\frac{1-\cos\: x}{2}}\)
- \(\cos\frac{x}{2}=\pm \sqrt{\frac{1+\cos\: x}{2}}\)
- \(\tan(\frac{x}{2}) = \sqrt{\frac{1-\cos(x)}{1+\cos(x)}}\)
Albegra Maths Formulas
- (a + b)2=a2 + 2ab + b2
- (a−b)2=a2−2ab + b2
- (a + b)(a – b)=a2 – b2
- (x + a)(x + b)=x2 + (a + b)x + ab
- (x + a)(x – b)=x2 + (a – b)x – ab
- (x – a)(x + b)=x2 + (b – a)x – ab
- (x – a)(x – b)=x2 – (a + b)x + ab
- (a + b)3=a3 + b3 + 3ab(a + b)
- (a – b)3=a3 – b3 – 3ab(a – b)
- (x + y + z)2=x2 + y2 + z2 + 2xy + 2yz + 2xz
- (x + y – z)2=x2 + y2 + z2 + 2xy – 2yz – 2xz
- (x – y + z)2=x2 + y2 + z2 – 2xy – 2yz + 2xz
- (x – y – z)2=x2 + y2 + z2 – 2xy + 2yz – 2xz
- x3 + y3 + z3 – 3xyz=(x + y + z)(x2 + y2 + z2 – xy – yz−xz)
- (x + a)(x + b)(x + c)=x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
- x3 + y3=(x + y)(x2 – xy + y2)
- x3 – y3=(x – y)(x2 + xy + y2)
- (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)
- (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)
- a4 – b4 = (a – b)(a + b)(a2 + b2)
- a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)
- If n is a natural number, an – bn = (a – b)(an-1 + an-2b+…+ bn-2a + bn-1)
- If n is even (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)
- If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)
- (a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….
- Laws of Exponents
(am)(an) = am+n
(ab)m = ambm
(am)n = amn - Fractional Exponents
a0 = 1
aman=am−naman=am−n
amam = 1a−m1a−m
a−ma−m = 1am
\( x^{2} + y^{2} = \frac{1}{2} \left [(x + y)^{2} + (x – y)^{2} \right ]\) |
\( x^{2} + y^{2} + z^{2} -xy – yz – zx = \frac{1}{2} [(x-y)^{2} + (y-z)^{2} + (z-x)^{2}]\) |
\(\mathbf{a_{1}x + b_{1}y + c_{1} = 0}\) |
\(\mathbf{a_{2}x+ b_{2}y + c_{2}} = 0 \) |
Distributive Property | a ( b+c) = (a × b) + (a × c) |
Commutative Property of Addition | a + b = b+a |
Commutative Property of Multiplication | a× b = b×a |
Associative Property of Addition | a + (b + c ) = ( a+ b ) +c |
Associative Property of Multiplication | a ( b × c ) = ( a× b ) × c |
Additive Identity Property | a +0 = a |
Multiplicative Identity Property | a×1 = a |
Additive Inverse Property | a+ ( -a) = 0 |
Multiplicative Inverse Property | a × 1/a = 1 |
Zero Property of Multiplication | a × 0 = 0 |
If\(\vec{a}=x\hat{i}+y\hat{j}+z\hat{k}\) then magnitude or length or norm or absolute value of \(\vec{a} \) is \( \left | \overrightarrow{a} \right |=a=\sqrt{x^{2}+y^{2}+z^{2}}\) |
A vector of unit magnitude is unit vector. If \(\vec{a}\) is a vector then unit vector of \(\vec{a}\) is denoted by \(\hat{a}\) and \(\hat{a}=\frac{\hat{a}}{\left | \hat{a} \right |}\) Therefore \( \hat{a}=\frac{\hat{a}}{\left | \hat{a} \right |}\hat{a}\) |
Important unit vectors are \(\hat{i}, \hat{j}, \hat{k}\), where \(\hat{i} = [1,0,0],\: \hat{j} = [0,1,0],\: \hat{k} = [0,0,1]\) |
If \( l=\cos \alpha, m=\cos \beta, n=\cos\gamma,\) then \( \alpha, \beta, \gamma,\) are called directional angles of the vectors\(\overrightarrow{a}\) and \(\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1\) |
\(\vec{a}+\vec{b}=\vec{b}+\vec{a}\) |
\(\vec{a}+\left ( \vec{b}+ \vec{c} \right )=\left ( \vec{a}+ \vec{b} \right )+\vec{c}\) |
\(k\left ( \vec{a}+\vec{b} \right )=k\vec{a}+k\vec{b}\) |
\(\vec{a}+\vec{0}=\vec{0}+\vec{a}\), therefore \( \vec{0}\) is the additive identity in vector addition. |
\(\vec{a}+\left ( -\vec{a} \right )=-\vec{a}+\vec{a}=\vec{0}\), therefore \(\vec{a}\) is the inverse in vector addition. |
Probability and Set Theory Maths Formulas
- Commutative= \( A\cup B = B\cup A \) and \( A\cap B = B\cap A \)
- Associative= \( A\cup (B\cup C) = A\cup (B\cup C) \) and \( A\cap (B\cap C) = A\cap (B\cap C) \)
- Neutral element= \( A\cup \theta = A \) and \( A\cap E = A \)
- Absorbing element= \( A\cup E = E \) and \( A\cap \theta = \theta \)
- Distributive= \( A\cup (B\cap C)=(A\cup B)\cap (A\cup C) \) and \( A\cap (B\cup C)=(A\cap B)\cup (A\cap C) \)
- De Morgan’s laws= \( \bar(A\cap B) = \bar A \cup \bar B \) and \( \bar(A\cup B) = \bar A \cap \bar B \)
- Independent Events= \( P(A | B)=P(A) \) and \( P(A\cap B)=P(A)×P(B)\)
- Conditional Probability= \( P(A | B)=\frac{P(A\cap B)}{P(B)} \)
- Laplace laws= \( P(A)=\frac{Number\;of\;ways\;it\;can\;happen}{Total\;Number\;of\;Outcomes} \)
- Complement of an Event= \( P (\bar A)=1 – P(A)\)
- Union of Events= \( P(A\cup B)=P(A)+P(B)−P(A\cap B)\)
Statistics Maths Formulas
\(Direct\; Method: x̅ = \frac{\sum_{i=1}^{n}f_i x_i}{\sum_{i=1}^{n}f_i}\) | |||||||||||
where fi xi is the sum of observations from value i = 1 to n And fi is the number of observations from value i = 1 to n | |||||||||||
\(Assumed\; mean\; method : x̅ = a+\frac{\sum_{i=1}^{n}f_i d_i}{\sum_{i=1}^{n}f_i}\) | |||||||||||
\(Step \;deviation \;method : x̅ = a+\frac{\sum_{i=1}^{n}f_i u_i}{\sum_{i=1}^{n}f_i}\times h\) | |||||||||||
\(Mode = l+\frac{f_1 – f_0}{2f_1 – f_0 – f_2} \times h\) | |||||||||||
\( Range = Largest\; Value – Smallest\; Value \) | |||||||||||
\(Median = l+\frac{\frac{n}{2} – cf}{f} \times h\) | |||||||||||
\( Variance = \sigma ^{2} = \frac{\sum (x- \bar{x})^{2}}{n}\) Where, x = Items given, x¯ = Mean, n = Total number of items |
|||||||||||
\( Standard\;Deviation \; \sigma = \sqrt{\frac{\sum (x-\bar{x})^{2}}{n}}\) Where, x = Items given, x¯ = Mean, n = Total number of items |
Conjunction | Disjunction | Implication | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
p | q | p∧ q | p | q | p∨q | p | q | p ⇒ q | |||
V | V | V | V | V | V | V | V | V | |||
V | F | F | V | F | V | V | F | F | |||
F | V | F | F | V | V | F | V | V | |||
F | F | F | F | F | F | F | F | V |
Law of noncontradiction | p∧~p⇔F | |
Law of the excluded middle | p∨~p⇔V | |
Double Negation | ~(~p)⇔p | |
Commutativity | Conjunction | p∧q⇔q∧p |
Disjunction | p∨q⇔q∨p | |
Associativity | Conjunction | (p∧q)∧r⇔p∧(q∧r) |
Disjunction | (p∨q)∨r⇔p∨(q∨r) | |
Neutral Element | Conjunction | p∧V⇔p |
Disjunction | p∨F⇔p | |
Absorbing Element | Conjunction | p∧F⇔F |
Disjunction | p∨V⇔V | |
Idempotence | Conjunction | p∧p⇔p |
Disjunction | p∨p⇔p | |
Distributive Property | Conjunction over Disjunction | p∧(q∨r)⇔(p∧q)∨(p∧r) |
Disjunction over Conjunction | p∨(q∧r)⇔(p∨q)∧(p∨r) | |
Properties of Implication | Transitive | (p⇒q)∧(q⇒r)⇒(p⇒r) |
Implication and Disjunction | (p⇒q)⇔~p∨q | |
Negation | ~(p⇒q)⇔p∧~q | |
Contrapositive of an Implication | (p⇒q)⇔(~q⇒~p) | |
Properties of Equivalence | Double implication | (p⇔q)⇔[(p⇒q)∧(q⇒p)] |
Transitive | [(p⇔q)∧(q⇔r)]⇒(p⇔r) | |
Negation | ~(p⇔q)⇔[(p∧~q)∨(q∧~p)] | |
De Morgan’s laws | Negation of a Conjunction | ~(p∧q)⇔~p∨~q |
Negation of a Disjunction | ~(p∨q)⇔~p∧~q | |
De Morgan’s laws | Negation of Universal Quantifier | ~(∀x,p(x))⇔∃x:~p(x) |
Negation of Existential Quantifier | ~(∃x:p(x))⇔∀x,~p(x) |
Limits Maths Formulas
1) If \(\lim_{x \to a} f(x) = l\; and \; \lim_{x \to a} g(x) = m\), then
- \( \lim_{x \to a} \left[ {f(x) \pm g(x)} \right] = l \pm m\)
- \( \lim_{x \to a} f(x) \cdot g(x) = l \cdot m\)
- \(\lim_{x \to a} \frac{{f(x)}}{{g(x)}} = \frac{l}{m}\), where \)m \ne 0\)
- \(\lim_{x \to a} c{\text{ }}f(x) = c{\text{ }}l\)
- \(\lim_{x \to a} \frac{1}{{f(x)}} = \frac{1}{l}\), where \)l \ne 0\)
2) \(\lim_{n \to \infty } {\left( {1 + \frac{1}{n}} \right)^n} = e\), where \)n\) is a real number.
3) \(\lim_{n \to 0} {\left( {1 + n} \right)^{\frac{1}{n}}} = e\), where \)n\) is a real number.
4) \(\lim_{x \to 0} \frac{{Sinx}}{x} = 1\), where \)x\) is measured in radians.
5) \(\lim_{x \to 0} \frac{{Tanx}}{x} = 1\)
6) \(\lim_{x \to 0} \frac{{Cosx – 1}}{x} = 0\)
7) \(\lim_{x \to a} \frac{{{x^n} – {a^n}}}{{x – a}} = n{a^{n – 1}}\)
8) \(\lim_{x \to 0} \frac{{{a^n} – 1}}{x} = \ln a\)
Logarithms Maths Formulas
Properties
- \(\log_{b}1 = 0\) (∵ b^0 = 1)
- \(\log_{b}b = 1\) (∵ b1 = b)
- \(y = \ln x \quad \Rightarrow e^y = x\)
- \(x = e^y \quad \Rightarrow \ln x = y\)
- \(x = \ln e^x = e^{\ln x}\)
- \(b^{\log_{b}x} = x\)
- \(\log_{b}{b^y} = y\)
Laws of Logarithms
1. \(\log_{b}{M \times N} = \log_b{{M}} + \log_b{{N}}\) (where b, M, N are positive real numbers and b ≠ 1)2. \(\log_{b}\frac{M}{N} = \log_b{{M}} – \log_b{{N}}\)(where b, M, N are positive real numbers and b ≠ 1)
3. \(\log_{b}M^c = c \ \log_b{{M}}\) (where b and M are positive real numbers , b ≠ 1, c is any real number)
4. \(\log_{b}M = \frac{\log {M}}{\log b} = \frac{\ln {M}}{\ln b} = \frac{\log_{k} {M}}{\log_{k} b}\) (where b, k and M are positive real numbers, b ≠ 1, k ≠ 1)
5. \(\log_{b}a = \frac{1}{\log_{a}b}\) (where a and b are positive real numbers, a ≠ 1, b ≠ 1)
6. If \(\log_{b}{M}=\log_{b}{N}\), then M = N (where b, M and N are positive real numbers and b ≠ 1).
Related Math Formulas
Learning Math is not easy and this is the reason why we have discovered unique ways to amplify your learning. We have given easy definitions and formulas of different mathematical concepts so that you can learn them at your fingertips quickly. Also, we have hosted a large sheet of formulas for your reference so that you can memorize them and apply them wherever needed.
Download 1300 Maths Formulas PDF
You just have to click on the topic and get all relevant details and formulas with simple navigation. Also, we have discussed the applications of the different mathematical concepts in real life and how it can help students in their careers. Well, formulas can be simpler or complex based on the topic you selected but there is a need for depth understanding of each of the formulas to solve a particular problem.
List of Math Theorems