# Surface Areas and Volumes Formulas for Class 9 Maths Chapter 13

## Surface Areas and Volumes Formulas for Class 9 Maths Chapter 13

Are you looking for Surface Areas and Volumes formulas or important points that are required to understand Surface Areas and Volumes for class 9 maths Chapter 13? You are the right place to get all information about Surface Areas and Volumes Class 9 maths chapters 13. Surface Areas and Volumes formulas play a vital role in preparing you for the class 9 exam as well as higher studies. Surface Areas and Volumes formulas are very helpful for better scores in the exam.  Check Surface Areas and Volumes formulas according to class 9:

 $\ Surface\;area\;of\;Cube=6a^{2}$ $\ Volume\;of\;a\;cube=a^{3}$ Where, a is the side length of the cube. $\ Surface\;area\;of\;Cuboid = 2(lb + bh + hl)$ $\ Volume\;of\;a\;Cuboid = h \times l \times w$ Where, l: Height, h: Legth, w: Depth $\ Diameter\;of\;a\;sphere=2r$ $\ Circumference\;of\;a\;sphere=2\pi r$ $\ Surface\;area\;of\;a\;sphere=4\pi r^{2}$ $\ Volume\;of\;a\;sphere=\frac{4}{3}\: \pi r^{3}$ $\ Curved\;Surface\;area\;of\;a\;Hemisphere =4\pi r^{2}$ $\ Total\;Surface\;area\;of\;a\;Hemisphere =3\pi r^{2}$ $\ Volume\;of\;a\;Hemisphere =\frac{2}{3}\: \pi r^{3}$ Where, r: Radius $\ Curved\;Surface\;area\;of\;a\;Cylinder =2\pi rh$ $\ Total\;Surface\;area\;of\;a\;Cylinder =2\pi r(r+h)$ $\ Volume\;of\;a\;Cylinder = \pi r^{2} h$ Where, r: Radius, h: Height $\ Total\;Surface\;Area\;of\;cone=\pi r \left (s+r \right )$ Where, r: Radius $\ Vomule\;of\;cone=\frac {1}{3}\pi r^{2}h$ $\ Curved\;Surface\;Area\;of\;cone=\pi rs$ Where, r: radius of cone. h:height of cone. s: slant height of the cone.

#### Summary of Surface Areas and Volumes

We have shared very important formulas for Surface Areas and Volumes which helps to score in the class 9 exams. If you have any questions and doubts related to Surface Areas and Volumes please let me know through comment or mail as well as social media. When you understand the formulas behind each Surface Areas and Volumes topics then it would be easier to solve the most complex problems related to Surface Areas and Volumes too.

#### NCERT Solutions For Class 9 Maths by Chapters

• Chapter 1 – Number Systems
• Chapter 2 – Polynomials
• Chapter 3 – Coordinate Geometry
• Chapter 4 – Linear Equations in Two Variables
• Chapter 5 – Introduction to Euclids Geometry
• Chapter 6 – Lines and Angles
• Chapter 7 – Triangles