find all the seventh roots of (3+4i)

First, convert the complex number to polar form

\( 3 + 4 i=5 \cos{\left({atan}{\left(\frac{4}{3} \right)} \right)} + 5 i \sin{\left({atan}{\left(\frac{4}{3} \right)} \right)} \)

According to the De Moivre’s Formula, all n-th roots of a complex number

\( r\left(\cos\left(\theta\right)+i\sin\left(\theta\right)\right) \)

are given by  \( \sqrt[n]{r}\left(\cos\left(\frac{\theta+2\pi k}{n}\right)+i\sin\left(\frac{\theta+2\pi k}{n}\right)\right) \)

We have that \( r = 5, \theta= {atan}{\left(\frac{4}{3} \right)}, n=7 \)

Sub in k = 0, 1, 2, 3, 4, 5, 6 to get all of the roots in polar form.

\( \sqrt[7]{3 + 4 i}=\sqrt[7]{5} \cos{\left(\frac{{atan}{\left(\frac{4}{3} \right)}}{7} \right)} + \sqrt[7]{5} i \sin{\left(\frac{{atan}{\left(\frac{4}{3} \right)}}{7} \right)}\approx 1.24747270589553 + 0.166227124177353 i \)

By Editorial Staff

Here you can check the Mathematics Questions which is related to Fractions and multiples and other topics. You can check Maths Formulas, Chemistry Formulas, and Hindi Grammar. Subscribe My YouTube Channel for Online Study: SabkuchhLearn