A Plus B Plus C Whole cube

Are you looking for A plus B plus C Whole cube? You can check the formulas of A plus B plus C Whole cube in three ways. We are going to share the (a+b+c)^3 algebra formulas for you as well as how to create (a+b+c)^3 and proof.

we can write: \((a+b+c)^3 = (a+b+c)(a+b+c)(a+b+c) \)

\(=>(a+b+c)^3 = (a+b+c)^2 (a+b+c) \) [we know that what is the formula of \( (a+b+c)^2 \)]

\(=>(a+b+c)^3 = (a^2+b^2+c^2 + 2ab +2bc +2ca) (a+b+c) \)

need too write in simple form of multiplication \(=>(a+b+c)^3 = a \times (a^2+b^2+c^2 + 2ab +2bc +2ca)\\ + b \times (a^2+b^2+c^2 + 2ab +2bc +2ca)\\ + c \times (a^2+b^2+c^2 + 2ab +2bc +2ca) \)

Simplify the all Multiplication one by one \((a+b+c)^3 = a \times (a^2+b^2+c^2 + 2ab +2bc +2ca)\\ + b \times (a^2+b^2+c^2 + 2ab +2bc +2ca)\\ + c \times (a^2+b^2+c^2 + 2ab +2bc +2ca) \)

\(=> (a+b+c)^3 = (a^3+ab^2+ac^2 + 2a^2b + 2abc + 2ca^2)\\ + b \times (a^2+b^2+c^2 + 2ab +2bc +2ca)\\ + c \times (a^2+b^2+c^2 + 2ab +2bc +2ca) \)

\(=> (a+b+c)^3 = (a^3+ab^2+ac^2 + 2a^2b + 2abc + 2ca^2)\\ + (a^2b+b^3+bc^2 + 2ab^2 + 2b^2c +2abc)\\ + c \times (a^2+b^2+c^2 + 2ab +2bc +2ca) \)

\(=> (a+b+c)^3 = (a^3+ab^2+ac^2 + 2a^2b + 2abc + 2ca^2)\\ + (a^2b+b^3+bc^2 + 2ab^2 + 2b^2c +2abc)\\ + (ca^2 + cb^2 + c^3 + 2abc + 2bc^2 + 2c^2a) \)

Arrage value according power and similear

\(=> (a+b+c)^3 = a^3 + b^3 +c^3 \\+ 6abc + 3a^2b+ 3ab^2  \\ + 3ac^2 + 3bc^2 +3b^2c + 3a^2c \)

\(=> (a+b+c)^3 = \\a^3 + b^3 +c^3 + 6abc+ 3ab (a+b) + 3ac (a+c) + 3bc (b+c)  \)

(a+b+c)^3 Verifications

Need to verify \( (a+b+c)^3 \) formula is right or wrong. put the value of a = 1, b=2 and c=3

put the value of a and b in the LHS

\( (a+b+c)^3  = (1+2+3)^3 \)

\( 6^3  = 216 \)

put the value of a and b in the RHS

\(=> a^3 + b^3 +c^3 + 6abc+ 3ab (a+b) + 3ac (a+c) + 3bc (b+c)  \)

\(=> 1^3 +2^3+3^3 +6 \times 1 \times 2 \times 3 + 3 \times 1 \times  2 (1+2) \\ + 3 \times 1 \times 3 (1+3) + 3 \times 2 \times 3 (2+3)  \)

\(=> 1 +8+27 +36 + 6 (3)  + 9 (4) + 18 (5)  \)

\(=> 36 +36 + 18  +36 + 90  \)

\(=> 72 + 54 + 90  \)

\(=> 126 + 90   =216 \)

Therefore \( LHR = RHS \)

Proof Formula: \((a+b+c)^3 = \\a^3 + b^3 +c^3 + 6abc \\+ 3ab (a+b) + 3ac (a+c) + 3bc (b+c)  \)

Summary (a+b+c)^3

If you have any issues in the (a+b+c)^3 formulas, please let me know through social media and mail. A Plus B Plus C Whole cube is most important algebra maths formulas for class 6 to 12.

By Editorial Staff

Here you can check the Mathematics Questions which is related to Fractions and multiples and other topics. You can check Maths Formulas, Chemistry Formulas, and Hindi Grammar. Subscribe My YouTube Channel for Online Study: SabkuchhLearn