






























16 MATHEMATICS

Fig. 1.13

We call this process of visualisation of representation of numbers on the number line,

through a magnifying glass, as the process of successive magnification.

So, we have seen that it is possible by sufficient successive magnifications to visualise

the position (or representation) of a real number with a terminating decimal expansion

on the number line.

Let us now try and visualise the position (or representation) of a real number with a

non-terminating recurring decimal expansion on the number line. We can look at

appropriate intervals through a magnifying glass and by successive magnifications

visualise the position of the number on the number line.

Example 11 : Visualize the representation of 5 37.  on the number line upto 5 decimal

places, that is, up to 5.37777.

Solution : Once again we proceed by successive magnification, and successively

decrease the lengths of the portions of the number line in which 5 37.  is located. First,

we see that 5 37.  is located between 5 and 6. In the next step, we locate 5 37.

between 5.3 and 5.4. To get a more accurate visualization of the representation, we

divide this portion of the number line into 10 equal parts and use a magnifying glass to

visualize that 5 37.  lies between 5.37 and 5.38. To visualize 5 37.  more accurately, we

again divide the portion between 5.37 and 5.38 into ten equal parts and use a magnifying

glass to visualize that 5 37.  lies between 5.377 and 5.378. Now to visualize 5 37.  still

more accurately, we divide the portion between 5.377 an 5.378 into 10 equal parts, and
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NUMBER SYSTEMS 17

visualize the representation of 5 37.  as in Fig. 1.14 (iv). Notice that 5 37.  is located

closer to 5.3778 than to 5.3777 [see Fig 1.14 (iv)].

Fig. 1.14

Remark : We can proceed endlessly in this manner, successively viewing through a

magnifying glass and simultaneously imagining the decrease in the length of the portion

of the number line in which 5 37.  is located. The size of the portion of the line we

specify depends on the degree of accuracy we would like for the visualisation of the

position of the number on the number line.
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18 MATHEMATICS

You might have realised by now that the same procedure can be used to visualise a

real number with a non-terminating non-recurring decimal expansion on the number

line.

In the light of the discussions above and visualisations, we can again say that every

real number is represented by a unique point on the number line. Further, every

point on the number line represents one and only one real number.

EXERCISE 1.4

1. Visualise 3.765 on the number line, using successive magnification.

2. Visualise 4 26.  on the number line, up to 4 decimal places.

1.5 Operations on Real Numbers

You have learnt, in earlier classes, that rational numbers satisfy the commutative,

associative and distributive laws for addition and multiplication. Moreover, if we add,

subtract, multiply or divide (except by zero) two rational numbers, we still get a rational

number (that is, rational numbers are ‘closed’ with respect to addition, subtraction,

multiplication and division). It turns out that irrational numbers also satisfy the

commutative, associative and distributive laws for addition and multiplication. However,

the sum, difference, quotients and products of irrational numbers are not always

irrational. For example, ( ) ( )6 6+ − , ( ) ( ) ( ) ( )2 2 3 3,− ⋅  and 
17

17
 are

rationals.

Let us look at what happens when we add and multiply a rational number with an

irrational number. For example, 3  is irrational. What about 2 3+  and 2 3 ? Since

3  has a non-terminating non-recurring decimal expansion, the same is true for

2 3+  and 2 3 . Therefore, both 2 3+  and 2 3  are also irrational numbers.

Example 12 : Check whether 7 5 , 
7

2 21 2
5

, ,+ π −  are irrational numbers or

not.

Solution : 5  = 2.236... , 2  = 1.4142..., π = 3.1415...
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NUMBER SYSTEMS 19

Then 7 5  = 15.652..., 
7

5
 = 

7 5 7 5

55 5
=  = 3.1304...

2  + 21 = 22.4142..., π – 2 = 1.1415...

All these are non-terminating non-recurring decimals. So, all these are irrational numbers.

Now, let us see what generally happens if we add, subtract, multiply, divide, take

square roots and even nth roots of these irrational numbers, where n is any natural

number. Let us look at some examples.

Example 13 : Add 2 2 5 3+  and 2 3 3– .

Solution : ( ) ( )2 2 5 3 2 3 3–+ +  = ( ) ( )2 2 2 5 3 3 3–+ +

                 = (2 + 1) 2 (5 3) 3 3 2 2 3+ − = +

Example 14 : Multiply 6 5  by 2 5 .

Solution : 6 5  × 2 5  = 6 × 2 × 5  × 5  = 12 × 5 = 60

Example 15 : Divide 8 15  by 2 3 .

Solution : 
8 3 5

8 15 2 3 4 5
2 3

×
÷ = =

These examples may lead you to expect the following facts, which are true:

(i) The sum or difference of a rational number and an irrational number is irrational.

(ii) The product or quotient of a non-zero rational number with an irrational number is

irrational.

(iii) If we add, subtract, multiply or divide two irrationals, the result may be rational or

irrational.

We now turn our attention to the operation of taking square roots of real numbers.

Recall that, if a is a natural number, then a b=  means b2 = a and b > 0. The same

definition can be extended for positive real numbers.

Let a > 0 be a real number. Then a  = b means b2 = a and b > 0.

In Section 1.2, we saw how to represent n  for any positive integer n on the number

2019-2020



20 MATHEMATICS

line. We now show how to find x  for any given positive real number x geometrically.

For example, let us find it for x = 3.5, i.e., we find 3 5.  geometrically.

Fig. 1.15

Mark the distance 3.5 units from a fixed point A on a given line to obtain a point B such

that AB = 3.5 units (see Fig. 1.15). From B, mark a distance of 1 unit and mark the

new point as C. Find the mid-point of AC and mark that point as O. Draw a semicircle

with centre O and radius OC. Draw a line perpendicular to AC passing through B and

intersecting the semicircle at D. Then, BD = 3.5 .

More generally, to find x , for any positive real

number x, we mark B so that AB = x units, and, as in

Fig. 1.16, mark C so that BC = 1 unit. Then, as we

have done for the case x = 3.5, we find BD = x

(see Fig. 1.16). We can prove this result using the

Pythagoras Theorem.

Notice that, in Fig. 1.16, ∆ OBD is a right-angled triangle. Also, the radius of the circle

is 
1

2

x +
 units.

Therefore, OC = OD = OA = 
1

2

x +
 units.

Now, OB = 
1 1

2 2

x x
x

+ − 
− = ⋅ 
 

So, by the Pythagoras Theorem, we have

BD2 = OD2 – OB2 = 

2 2
1 1 4

2 2 4

x x x
x

+ −   
− = =   

   
.

This shows that BD = x .

Fig. 1.16
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NUMBER SYSTEMS 21

This construction gives us a visual, and geometric way of showing that x  exists for

all real numbers x > 0. If you want to know the position of x  on the number line,

then let us treat the line BC as the number line, with B as zero, C as 1, and so on.

Draw an arc with centre B and radius BD, which intersects the number line in E

(see Fig. 1.17). Then, E represents x .

Fig. 1.17

We would like to now extend the idea of square roots to cube roots, fourth roots,

and in general nth roots, where n is a positive integer. Recall your understanding of

square roots and cube roots from earlier classes.

What is 3 8 ? Well, we know it has to be some positive number whose cube is 8, and

you must have guessed 3 8  = 2. Let us try 5 243 . Do you know some number b such

that b5 = 243? The answer is 3. Therefore, 5 243  = 3.

From these examples, can you define n a  for a real number a > 0 and a positive

integer n?

Let a > 0 be a real number and n be a positive integer. Then n a  = b, if bn = a and

b > 0. Note that the symbol ‘ ’ used in 32, 8, n a , etc. is called the radical sign.

We now list some identities relating to square roots, which are useful in various

ways. You are already familiar with some of these from your earlier classes. The

remaining ones follow from the distributive law of multiplication over addition of real

numbers, and from the identity (x + y) (x – y) = x2 – y2, for any real numbers x and y.

Let a and b be positive real numbers. Then

(i) ab a b= (ii)
a a

b b
=
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22 MATHEMATICS

(iii) ( ) ( )a b a b a b+ − = − (iv) ( ) ( ) 2
a b a b a b+ − = −

(v) ( ) ( )a b c d ac ad bc bd+ + = + + +

(vi) ( )
2

2a b a ab b+ = + +

Let us look at some particular cases of these identities.

Example 16 : Simplify the following expressions:

(i) ( ) ( )5 7 2 5+ + (ii) ( ) ( )5 5 5 5+ −

(iii) ( )
2

3 7+ (iv) ( ) ( )11 7 11 7− +

Solution : (i) ( ) ( )5 7 2 5 10 5 5 2 7 35+ + = + + +

(ii) ( ) ( ) ( )
2

25 5 5 5 5 5 25 5 20–+ − = − = =

(iii) ( ) ( ) ( )
2 2 2

3 7 3 2 3 7 7 3 2 21 7 10 2 21+ = + + = + + = +

(iv) ( ) ( ) ( ) ( )
2 2

11 7 11 7 11 7 11 7 4− + = − = − =

Remark : Note that ‘simplify’ in the example above has been used to mean that the

expression should be written as the sum of a rational and an irrational number.

We end this section by considering the following problem. Look at 
1

2
⋅  Can you tell

where it shows up on the number line? You know that it is irrational. May be it is easier

to handle if the denominator is a rational number. Let us see, if we can ‘rationalise’ the

denominator, that is, to make the denominator into a rational number. To do so, we

need the identities involving square roots. Let us see how.

Example 17 : Rationalise the denominator of 
1

2
⋅

Solution : We want to write 
1

2
 as an equivalent expression in which the denominator

is a rational number. We know that 2 . 2  is rational. We also know that multiplying
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1

2
 by 

2

2
 will give us an equivalent expression, since 

2

2
 = 1. So, we put these two

facts together to get

1 1 2 2

22 2 2
= × = ⋅

In this form, it is easy to locate 
1

2
 on the number line. It is half way between 0

and 2 .

Example 18 : Rationalise the denominator of 
1

2 3
⋅

+

Solution : We use the Identity (iv) given earlier. Multiply and divide 
1

2 3+
 by

2 3−  to get 
1 2 3 2 3

2 3
4 32 3 2 3

− −
× = = −

−+ −
.

Example 19 : Rationalise the denominator of 
5

3 5
⋅

−

Solution : Here we use the Identity (iii) given earlier.

So,
5

3 5−
 = 

( )
( )

5 3 55 3 5 5
3 5

3 5 23 5 3 5

++ − 
× = = + 

−− +  

Example 20 : Rationalise the denominator of 
1

7 3 2
⋅

+

Solution : 
1 1 7 3 2 7 3 2 7 3 2

49 18 317 3 2 7 3 2 7 3 2

 − − −
= × = =   −+ + − 

So, when the denominator of an expression contains a term with a square root (or

a number under a radical sign), the process of converting it to an equivalent expression

whose denominator is a rational number is called rationalising the denominator.
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24 MATHEMATICS

EXERCISE 1.5

1. Classify the following numbers as rational or irrational:

(i) 2 5− (ii) ( )3 23 23+ − (iii)
2 7

7 7

(iv)
1

2
(v) 2π

2. Simplify each of the following expressions:

(i) ( ) ( )3 3 2 2+ + (ii) ( ) ( )3 3 3 3+ −

(iii) ( )
2

5 2+ (iv) ( ) ( )5 2 5 2− +

3. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter

(say d). That is, π = 
c

d
⋅  This seems to contradict the fact that π is irrational. How will

you resolve this contradiction?

4. Represent 9 3.  on the number line.

5. Rationalise the denominators of the following:

(i)
1

7
(ii)

1

7 6−

(iii)
1

5 2+
(iv)

1

7 2−

1.6 Laws of Exponents for Real Numbers

Do you remember how to simplify the following?

(i) 172 . 175 = (ii) (52)7 =

(iii) 
10

7

23

23
 = (iv) 73 . 93 =

Did you get these answers? They are as follows:

(i) 172 . 175 = 177 (ii) (52)7 = 514

(iii)
10

3

7

23
23

23
= (iv) 73 . 93 = 633
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To get these answers, you would have used the following laws of exponents,

which you have learnt in your earlier classes. (Here a, n and m are natural numbers.

Remember, a is called the base and m and n are the exponents.)

(i) am . an = am + n (ii) (am)n = amn

(iii)

m
m n

n

a
a , m n

a

−
= > (iv) ambm = (ab)m

What is (a)0? Yes, it is 1! So you have learnt that (a)0 = 1. So, using (iii), we can

get 
1

.
n

n
a

a

−
=  We can now extend the laws to negative exponents too.

So, for example :

(i)
2 –5 –3

3

1
17 17 17

17
⋅ = = (ii) 2 –7 –14(5 ) 5=

(iii)

–10
–17

7

23
23

23
= (iv) –3 –3 –3(7) (9) (63)⋅ =

Suppose we want to do the following computations:

(i)
2 1

3 32 2⋅ (ii)

4
1

53
 
 
 

(iii)

1

5

1

3

7

7

(iv)
1 1

5 513 17⋅

How would we go about it? It turns out that we can extend the laws of exponents

that we have studied earlier, even when the base is a positive real number and the

exponents are rational numbers. (Later you will study that it can further to be extended

when the exponents are real numbers.) But before we state these laws, and to even

make sense of these laws, we need to first understand what, for example 
3

24  is. So,

we have some work to do!

In Section 1.4, we defined n a  for a real number a > 0 as follows:

Let a > 0 be a real number and n a positive integer. Then n a  = b, if bn = a and

b > 0.

In the language of exponents, we define n a  = 

1

na . So, in particular, 
1

3 32 2= .

There are now two ways to look at 
3

24 .
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3

24  =

3
1

324 2 8
 

= = 
 

3

24  = ( ) ( )
1 1

3 2 24 64 8= =

Therefore, we have the following definition:

Let a > 0 be a real number. Let m and n be integers such that m and n have no

common factors other than 1, and n > 0. Then,

m

na  = ( )
m

n mn a a=

We now have the following extended laws of exponents:

Let a > 0 be a real number and p and q be rational numbers. Then, we have

(i) ap . aq = ap+q (ii) (ap)q = apq

(iii)

p
p q

q

a
a

a

−
= (iv) apbp = (ab)p

You can now use these laws to answer the questions asked earlier.

Example 21 : Simplify (i)
2 1

3 32 2⋅ (ii)

4
1

53
 
 
 

             (iii)

1

5

1

3

7

7

(iv)
1 1

5 513 17⋅

Solution :

(i)

2 12 1 3

13 33 3 32 2 2 2 2 2

 
+ 

 ⋅ = = = = (ii)

4
1 4

5 53 3
 

= 
 

(iii)

1
1 1 3 5 25
5 3 15 15

1

3

7
7 7 7

7

  − −
− 

 = = = (iv)
1 1 1 1

5 5 5 513 17 (13 17) 221⋅ = × =

EXERCISE 1.6

1. Find : (i)
1

264 (ii)
1

532 (iii)
1

3125

2. Find : (i)
3

29 (ii)
2

532 (iii)
3

416 (iv)
1

3125
−

3. Simplify : (i)
2 1

3 52 2⋅ (ii)
7

3

1

3

 
 
 

(iii)

1

2

1

4

11

11

(iv)
1 1

2 27 8⋅
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1.7 Summary

In this chapter, you have studied the following points:

1. A number r is called a rational number, if it can be written in the form 
p

q
, where p and q are

integers and q ≠ 0.

2. A number s is called a irrational number, if it cannot be written in the form 
p

q
, where p and

q are integers and q ≠ 0.

3. The decimal expansion of a rational number is either terminating or non-terminating recurring.

Moreover, a number whose decimal expansion is terminating or non-terminating recurring

is rational.

4. The decimal expansion of an irrational number is non-terminating non-recurring. Moreover,

a number whose decimal expansion is non-terminating non-recurring is irrational.

5. All the rational and irrational numbers make up the collection of real numbers.

6. There is a unique real number corresponding to every point on the number line. Also,

corresponding to each real number, there is a unique point on the number line.

7. If r is rational and s is irrational, then r + s and r – s are irrational numbers, and rs and 
r

s
 are

irrational numbers, r ≠ 0.

8. For positive real numbers a and b, the following identities hold:

(i) ab a b= (ii)
a a

b b
=

(iii) ( ) ( )a b a b a b+ − = − (iv) ( ) ( ) 2
a b a b a b+ − = −

(v) ( )
2

2a b a ab b+ = + +

9. To rationalise the denominator of 
1

,
a b+

 we multiply this by ,
a b

a b

−

−
 where a and b are

integers.

10. Let a > 0 be a real number and p and q be rational numbers. Then

(i) ap . aq = ap + q (ii) (ap)q = apq

(iii)

p
p q

q

a
a

a

−
= (iv) apbp = (ab)p
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